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LETTER TO THE EDITOR 

Multisoliton solutions of nonlinear dispersive wave equations 
not soluble by the inverse method 

R K Dodd, R K Bullough and S Duckworth 
Department of Mathematics, University of Manchester Institute of Science and Technology, 
Manchester M60 IQD, UK 

Received 30 May 1975 

Abstract. Numerical solutions of certain physically important generalized sine-Gordon 
equations display complex multisoliton behaviour. Two theorems show that these equa- 
tions have neither Backlund transformations nor an infinity of polynomial conserved 
densities. Yet all known equations with multisoliton solutions obtained by the inverse 
method seem to yield both. 

The ‘double sine-Gordon (SG) equation’ 

cxx - orr = sin e +) sin ) o (1) 
occurs in the theory of the propagation of resonant ultra-short (5 lo-’ s) optical pulses 
through degenerate media (Lamb 1971, Duckworth et a1 1975, to be called I). The atoms 
or molecules of the media are supposed to have a single significant frequency at 
resonance but the resonant transitions take place between pairs of 2 J+  1 degenerate 
levels with selection rules AJ = 0, AMJ = 0. The equation (1) applies specifically to 
the case J = 2. For arbitrary J equation (1) is replaced by the ‘multiple sine-Gordon 
equation’ 

(2) 

When J = 1 equation (2) becomes the simple (single) sineGordon equation 
cxx- orr = sin e. This equation governs the propagation of sharp-line resonant pulses 
through non-degenerate media (Lamb 1971) and the phenomenon of self-induced 
transparency (SIT). It also has application to many other different physical problems. 
A multisoliton solution of this simple SG is known (Ablowitz et al 1973a, Caudrey et al 
1973b, Hirota 1972). These analytical solutions are ‘kink’ solutions whose derivatives 
are pulse solutions : in the optical case these pulses are pulses of electrical field envelope. 
The pulse solutions break up into a series of hyperbolic secant pulses (single solitons) 
of characteristic ‘areas’ (cf eg Lamb 1971) each equal to 271. These solitons have dif- 
ferent amplitudes and hence different speeds V < c: V increases with pulse amplitude. 
Slusher and Gibbs (1972) report evidence of pulse break-up of this character in the SIT 
of non-degenerate ”Rb vapour; Salamo et al (1974) report similar evidence in the SIT 
of degenerate and non-degenerate Na vapour. Other nonlinear dispersive wave systems 
show similar break-up and are known to have multisoliton solutions. For example, 
the Korteweg-de Vries equation governs such break-up in ion-acoustic waves in 
plasmas (Ikezi et a1 1970) and Hirota (1971) has found a multisoliton solution of it. 
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A multisoliton solution of equation (2) has not been found for J > 1 ; but we have 
obtained (I) numerical solutions for J = 2 and J = 3 which show all the characteristic 
features of solitons. For example, when J = 2, so that (1) applies, the initial condition 
o = 0 corresponds to an initially unexcited dielectric of five-fold degenerate two-level 
atoms. Single distortionless soliton-like pulses are double peaked with area 471; break- 
up occurs into trains of such 471 pulses of different amplitudes whilst two 471 pulses can 
collide and pass through each other without change of shape and velocity and with 
phase shifts which are certainly small. 

We have also observed features not seen previously in collisions between single 
solitons. In particular we report here a new type of soliton-like break-up and collision 
observed in numerical solutions of (2) in the case J = 3. Figure 1 illustrates one form of 

Figure 1. Calculated pulsed solutions of the triple SG. The initial condition is o = U, .  

The initial pulse is a 6n hyperbolic secant. Break-up occurs with the double-peaked soliton 
of area 6n - 2u, leading. 

this break-up. The initial state is CT = 3 cos-l[g- 1 +,/7)] E ol. This is a zero of 
sin CT ++ sin $0 + f sin & and is an unstable singular point of the triple SG. In the optical 
pulse problem o = c1 represents, in the absence of spontaneous radiation processes, 
a stable equilibrium but excited dielectric of seven-fold degenerate two-level atoms or 
molecules. A second zero 671 - o1 represents a similar equilibrium dielectric. It may be 
possible to create short-lived dielectrics of either type in molecular gases where infrared 
vibration-rotation transitions with Q(J)  symmetry have small Einstein A coefficients. 

The break-up shown in figure 1 is unusual in two respects. Firstly it involves two 
distinct types of soliton distinguishable both by shape and area: the two-peaked soliton 
has area 6n-2a1, the one-peaked 201, and neither is an integral multiple of 271. The 
former takes a dielectric in the equilibrium state o = o1 to one in the equilibrium state 
671 - ol. Both states have equal energy. The pulse of area 201 takes the dielectric from 
state o = 671- o1 to the original state CT = ol. Soliton-like pulses must take dielectrics 
from equilibrium state to equilibrium state. Therefore-with the initial condition o = o1, 
break-up must take place with the two-peaked pulse leading. Similarly if o = 671-ol 
initially, break-up must take place in reverse order. Figure 2 confirms this prediction : 
note the very broad double-peaked pulse at the back. 
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Figure 2. Calculated pulsed solutions of the triple SG when U = 6n-U,  initially. A 6n 
hyperbolic secant now breaks with the single-peaked soliton of area 20, leading. 

It follows that in a collision between two such pulses in their proper orders the 
pulses maintain their order: area and shape are preserved in the collision but ampli- 
tude, velocity and energy are exchanged. This expectation also has been confirmed on 
the computer. 

Equations (2) are Lorentz invariant : transformation to the rest frame yields second- 
order ordinary differential equations. From the associated phase planes we predict a 
variety of similar collision behaviours; for example, for J = 4 collisions between one 
one-peaked and one three-peaked pulse in proper order preserve that order. Such col- 
lisions contrast with the only previously known case of collision between dissimilar 
solitons (Caudrey et al 1973a). Here a 2n sech collides with a On solution and the two 
solitons emerge in reverse order after col1ision.t 

Numerical methods cannot confirm the exact multisoliton character of the solutions 
of (2). But we see no evidence of deviations from exact soliton behaviour of the type 
reported by Kruskal (1974) for the Thirring equation oxx-crrz = - O + ~ - ~ O ~ .  This 
equation approximates to the simple SG but does not have multisoliton solutions. Our 
present conclusion therefore is that equations (2) have a wealth of unusual solutions of 
multisoliton type. 

This conclusion is a main point of this note. But a second point is to report that, 
despite this, equations (2) are apparently not soluble by the inverse scattering method 
as it is presently formulated. We have proved two theorems for nonlinear dispersive 
wave equations in z(x, t )  of the form 

zxz = F(z).  (3) 
Equations (2) take this form after changing the independent variables to the charac- 
teristic lines x -, x - t ; t -, x + t .  

The theorems are as follows : 

Theorem 1. 
Two equations zxt = F(z), zlxZ = G(z’) have an invertible Backlund transformation (BT) 
z - z ‘  if and only if F , G  are solutions of F-a2F = 0, G-a2h-’G = 0 for some 

t Figure 1 in this paper shows break-up only. Details of the collision will be published. 
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complex-valued constant a, not excluding a = 0, and for any real h # 0. If a # 0 the 
BT is 

z: = hz, +?[A ak exp ( g ( z ’  - hz)) + hD exp ( -&z’ - hz))]  

between 

zX1 = C exp(az) + D exp( - az) 

zkt = Aexp -2 +Bexp -- (i I ( hrZ1 
where hZCD = AB (we assume A, B, C, D so chosen that both zX1 and zkl are real). If 
a = ,/-1, h = 1 and A = C = - B  = - D  = i, this BT is the well known auto-BT 
transforming between two solutions of the simple SG (Lamb 1971). McLaughlin and 
Scott (1973) have reported a form of theorem 1 for auto-BT. 

Theorem 2. 
The equation z,, = F(z) has an infinity of polynomial conserved densities (PCD) of every 
even rank if and only if 

F(z) = A exp(az) + B exp( - az) 

where c1 is some nonzero complex-valued constant. 
Kruskal(l974) has stated a theorem included by ours. In essence Kruskal’s theorem 

is that zXl = F(z) has the PCD iz; and has a further PCD if and only if P -  a2F = 0. 
Chen (1974) shows that apparently? all nonlinear dispersive wave equations soluble 

by the inverse scattering method in the forms due to Zakharov and Shabat (1971) or 
Ablowitz er a1 (1973b) have auto-aT. We have shown (Dodd and Bullough 1975) by the 
methods of the former paper that all equations soluble by the inverse method have an 
infinity of PCD. Theorems 1 and 2 show that equations (2) have neither a u t o m  nor an 
infinity of PCD and we actually find one PCD only in agreement with Rund (1974, private 
communication). 

It follows that there are nonlinear dispersive wave equations (namely (2) with 
J > 1) which have multisoliton-type solutions which are not soluble by the inverse 
method Caudrey and Gibbon (1975) have obtained analytical two- and multisoliton 
solutions of systems of equations which generalize and include the Boussinesq equation 
for which Hirota (1973) found a multisoliton solution. These equations do not appear 
to have auto-BT, an infinity of PCD, and a solution by the inverse method. Further work 
is needed on these several equations. 
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